This is a problem from Leetcode - Sort an Array.

Given an array of integers nums, sort the array in ascending order.

- Apr 19, 2019...more
## Maximum Sum Circular Subarray

Apr 18, 2019...moreThis is a problem from Leetcode - Maximum Sum Circular Subarray.

Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.

Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)

Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], …, C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)

## Longest Arithmetic Sequence

Apr 17, 2019...moreThis is a problem from Leetcode - Longest Arithmetic Sequence.

Given an array A of integers, return the length of the longest arithmetic subsequence in A.

Recall that a subsequence of A is a list A[i_1], A[i_2], …, A[i_k] with 0 <= i_1 < i_2 < … < i_k <= A.length - 1, and that a sequence B is arithmetic if B[i+1] - B[i] are all the same value (for 0 <= i < B.length - 1).

## Maximum Difference Between Node and Ancestor

Apr 16, 2019...moreThis is a problem from Leetcode - Maximum Difference Between Node and Ancestor.

Given the root of a binary tree, find the maximum value V for which there exists different nodes A and B where V = |A.val - B.val| and A is an ancestor of B.

(A node A is an ancestor of B if either: any child of A is equal to B, or any child of A is an ancestor of B.)

## 3Sum With Multiplicity

Apr 15, 2019...moreThis is a problem from Leetcode - 3Sum With Multiplicity.

Given an integer array A, and an integer target, return the number of tuples i, j, k such that i < j < k and A[i] + A[j] + A[k] == target.

As the answer can be very large, return it modulo 10^9 + 7.